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We present a two-layer interface model for calculating the interfacial tension and adsorp- 
tion of a solid A- l iquid B-solute C system from the phase diagram and the thermo- 
dynamic mixing data of liquid alloys of the three AB, BC and AC systems. This model 
correctly predicts the isotherms "interfacial tension versus composition" over the whole 
ternary range where a solid and a liquid coexist. From this model, we establish a tensio- 
activity criterium for the infinitely dilute solute C at the solid-liquid interface. This is in 
good agreement with the measurements of interracial activity in systems studied with 
iron, aluminium or zinc-based solid phase. 

1. I n t r o d u e t i o n  
The knowledge of the energetic properties of 
solid-liquid interfaces in multicomponent systems, 
is of a great interest in materials science because 
such interfaces play an important part in nucleation 
and crystal growth of melts, wetting phenomena 
and brazing, liquid-phase sintering, and embrittle- 
ment of solids by liquid metals. 

This explains the numerous models for calcu- 
lation of solid-liquid interracial tension that have 
been presented by many authors over the last ten 
years [ 1-5 ]. However, in view of the difficulties in 
correctly describing the atomic structure of metal 
solid-liquid interfaces, these models are restricted 
to simple binary systems. For many applications, 
however, multicomponent systems must generally 
be considered, and it is of particular interest to 
know the influence of a third element on the 
interfacial tension of a solid A-liquid B-based 
system. 

As the complexity of description of metallic 
systems increases very rapidly with the number 
of components, we present for ternary systems, a 
model based on several simplifying but physically 
justified assumptions, in order to extract the 
principal factors determining the tensioactivity at 
solid-liquid interfaces. 

2. The interfacial model 
For calculating the interfacial tension of an 
A - B - C  system (where the major component of 
the solid is the metal A) we use atomistic models 
based on the following assumptions: 

1. the interactions are restricted to the nearest 
neighbouring atoms; and 

2. the atoms of the liquid phase are on the sites 
of a crystalline-like lattice which is isomophoric and 
coherent with that of the solid phase. 

The interface is represented by two monatomic 
layers, one liquid, the other solid. This choice is 
supported by the works on binary systems of Camel 
et aI. [6] and Passerone and Eustathopoulos [7] 
who showed that at low temperatures (T/TAm ~ 1) 
the interface of these systems is atomically smooth 
and becomes rough only near the melting tempera- 
ture, TAm, of the major element of the solid phase. 
Moreover, Coudurier et al. [8], using a multilayer 
model, have shown that two layers (which is the 
minimum thickness of an atomically smooth 
solid-liquid interface) are generally sufficient to 
describe the composition profile at the interface 
of binary systems, except in the temperature range 
where instability of the liquid exists (miscibility 
gap). 

The A - B - C  solid-interface-liquid system is 
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Figure 1 Two layer model of sol id- l iquid interfaces of a 
ternary system. 

represented in Fig. 1 : the number of atoms in each 
bulk phase ] and in each interfacial layer ] are, 
respectively, N! ' j " and N ~ with N ' / N  ~ 1. 

3. Interfacial  tension 
3.1. Expression 
The free energy of such a system at equilibrium is 
given by [9]: 

F = - - P V +  og~+ Z Y. [ (N~xJ+NUYl)~{]  
i j 

( 1 )  

where P is the pressure of the system, V, the 
volume, a, the interfacial tension, ~2 the interfacial 
area, x~, y~, the molar fractions of i in the bulk 
phase ] and in the interfacial layer ], respectively, 
p~, the chemical potential of i in the phase ]. 

As the two phases are condensed, the term PV 
is negligible compared with the energy of the 
system [9], and the expression of the interfacial 
tension is then: 

o = -- ~i ~i ( (N]x i  + N ' @ i ) g i  (2) 

For calculating F and /a{, which is a partial 
derivative of F: 

T, V ,N} '  g= i 

Bragg and Williams statistics are used: they assume 
a perfectly disordered distribution of the atoms on 
the different sites of each phase. The free energy, 
F, is calculated from the partition function, r 

F = -- k T  In q~ (4) 
with 

I-IN~!NJ!Nq'I-IN'/, ( - - k - T )  = ~ exp (5) 

i 

where k is the Boltzman constant and E the con- 
figurational energy of a perfectly disordered 

system. E can be decomposed into four terms: 

E = E s + E  L + E  ' s + E  'L (6) 

E J is the configurational energy of the phase ] 
containing N j atoms, and E 'i the same energy of 
the interracial layer ] containing N u atoms. Each 
term is calculated by additioning the energy of 
all the pairs of atoms: 

E1 = _z (N i _ mN,J ) [CAA " ~ l - r j  ~ AJ2 + e~BX BJ2 
2 

�9 j 2  
+e~CXc  + J J J oM x J x  j 2 e A B X A X B  + ~cBC B C 

+ J J J 2 eAcXAXc] (7a) 

E 'j = zN  'i ( l �9 .2 ] s ej . , i ~ + e j  ..j2 2 " ( e A A Y A  -}- BBYB CCYC 

-Jr J J J e j " 'J " ' j  + 2 J J ] 2eAByAy B + 2 BC-YB~C eAcYAYc)  

j j j rJ , J ~ i  ~J , , J ~ i  + m [eAAYAXA + + CBBY B.,'~ B cCCYC-~C 

+ e i B  J ] J ] �9 j J ' . y B X A )  + (YBXc  (YAXB + e~C + Y 6 X ~ )  

+ eLo (y xJ  + y xi)] 

m / SL S L SL S L SL S ,  L 
+ 2 I ' e A A Y A Y A  + e B s y B Y B  + e c c Y c ~ c  

SL ~SL. S , L + e S L .  S L + eABySA Y~ + =Bcym~ CA~CYA 

SL S eSL S L SL S 1 + e B A Y B Y  L +  cBYcYB + e A c y A y  L) 
) 
(75) 

where z is the coordination number, l, the fraction 
of the nearest neighbours located in the same layer 
parallel to the interface, and m in an adjacent one 
(l + 2m = 1), ~i ' ,  the energy ofheteroatomic pair 
in the ]-phase, and eS, L , the energy of the pair 
composed by an i solid atom and an i' liquid one 

es,b. 
By introducing the exchange energies Wi};" 

wz '  : eli e~, 
, , . ,  = z ( 8 )  

and putting N 's = N  'L = N '  and N s = N  L =N,  
the configurational energy is given by: 

Z , �9 

E = ~- ~ [(N/A + N2 ) ekA + (N~ + N~)  e~B 

+ (g$ + 4 d  

+ y. N[x x  + x xJc + -~A-~G '~AC ] ] 

_l V ' N ' [ y [ Y ~ W ~ B  "''~''ju'#- J'BZC'~BC +YAYcWAC]i i # 
+ 2  �9 r 
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+mZN,[ (y~xJB  J J i i "" + yBXA ) W2B - -  X A X B  
J 
+ J J J J J 1 "" ( y ~ x c  - ) W13% +ycXB XBX C 

+(ykx~ J J J J �9 +yCX A --XAXc) W~C] 

m N , ( y S y ~  SL S L SL CCJ WAA -]- Y BY B WBB + Y Sy ~ wSL 

+ m N , ( y S  L SL S_L,,,SL S L SL AYB WAS + Y B Y c  wBC +YcYA WCA 
S L -,,SL Y BY A WBA "~- ySy ~ SL Wc B + y S y L  SL WAC) (9) 

The different terms of this equation represent: 
1. first term, the energy of a system where all 

the atoms are supposedly surrounded by atoms of 
the same chemical and physical state; 

2. second term, the exchange energy associated 
with the formation of the solid and liquid bulk 
solutions; 

3. third term, the exchange energy of the hetero- 
atomic pairs in the interracial layers; 

4. fourth term, the exchange energy of the 
heteroatomic pairs made of one atom of the / 
interfacial layer and one atom located in the 
adjacent layer belonging to the /bulk  phase; 

5. fifth term, the exchange energy of the pairs 
made of chemically identical but physically dif- 
ferent atoms; and 

6. the last term, the exchange energy of pairs of 
both chemically and physically different atoms. 

From this expression of if, F can be calculated 
(Equations 4, 5) as the chemical potentials of each 
element i in the bulk phase / neglecting the terms 
in N' /N  of Equation 9. 

For example, for A we find: 

�9 Z �9 

P l  = ~ eJAA + kT ln  xJA + IAIJJVrAB~B~J 2A-" WJJAc Xj2c 

+ (W~B + W~'c -- Wgc)X~XJc. (10) 

The expression of the interracial tension is then: 

oco = k T ~ (  x~ y~  +y~lnY~x~ +y~lnY'~]x~] 

+l Z (yJAy~ W~B J j "" j ,i "" + Y s Y c  W~c +YAYc W~c) 
J 

+ ( m - 1 ) E l ( y ~ x ~  J J ~ i ' + Y B X A  - - X A X B )  W,~ B 
J . 

+ ( y ~ x ~  i J _ x ~ x  j " +ycxB ,3 c) W~c 

+ (y~x~ +xJ~.,J -xJA xJ'o~ W~cl 
_{_ S g SL --  S L-,,SL S L~4/SL "~ m(y  AY A W AA + tYBYBWBB YcYc CCY 

S L SL- S L ~,,SL S L wSL + m(yAYBWAB + ~-YBYcWBC Y c Y A  CA 
q_ S L- , ,SL  + y S y L W S L  S . L w S L  ~, 

Y B Y A W B A  B CB + Y A Y C  AC)  

(11) 

where co is the atomic interfacial area (co = ~2/N'). 
All the energetic parameters W~ii; , which 

appear in Equations 10 and 11 are linked to physi- 
cal quantities, the values of which can be found in 
the literature. 

By putting xi~ i, =Yi~i '  in Equation 11, a 
o relationship can be found between W sL and a i : 

m,APW sL = a~fZM (12) 

where g2 M is the molar interfacial area and ~ the 
Avogadro number. 

The parameter W!i, is replaced by its molar 
quantity X{i, which is the molar exchange energy 
of the ii' corresponding regular binary solution: 

~ w i i ,  = x{,, (13) 

The heteroatomic interactions across the inter- 
face Wii; are linked to the two others according 
to Coudurier et al. [ 10]: 

~w~, ~ S~ ~) ~ -- ii' 
m 

(14) 

Taking into account all these equations 
(Equations 12, 13 and 14), the expression of the 
interfacial tension becomes: 

S o S o S o 
0-~-~M = YAUA~'~M +YBOB~'~M + y G O C ~ M  

+ RT Z [yk ln(yk/xk) + y~ l n ( y ~ / ~ )  
'1 

+YJcln(yJc/xJc)] + l  ~ (XABYAY J j 
J 

+ ~k j ' ] "  J + ~ J  " J "  J ' ~ + m  E L j j '  
BCYBYC CAZAYC l (~kABYAY B 

j@j' 

L j j '  L " "' 
+ XBcYBYc + X c A Y l Y ~ ) - - ( I  + m) ~ [X~B(Y~X J J 

J 
J J J ] 

"J" WB XA - -  XA XB) "+" ~kBC J j ] j (YBXc + ycXB 

_ ] ] J J J J 1 ~kCA ( y c X A  - -  XJcXJA )1 XBXc ) + + YAXc 
05) 

3.2. Estimation of the parameters 
The interfacial molar area, ~N,  is computed 
from the solid molar volume Vm : 

aM = f~ (16) 

wheref is  a structural factor equal to 1.091 for the 
[1 1 ll plane of an f cc  structure and the 100011 
plane of an hc  one, and equal to 1.12 for a i l  101 
plane of a cc  structure, these planes being the 
most densely packed planes of the corresponding 
structures. For all these orientations we have: 

l -- 2m = 1/2 
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The values of a] are estimated by using the 
empirical equation deduced from existing data on 
the solid-liquid interfacial tension of pure metals 
[lll: 

o i i - 2 / 3  ai = O.065Lf(Vm) (mJm -2) (17) 

where Lf is the heat of fusion in J tool -1 and Vim 
in cm a tool -~. 

The excess entropy of binary metallic solutions 
being generally not negligible, the X L, parameters 
are chosen equal to the mean value of the excess 
free energies at infinite dilution ~ s ~  AG i and 
AG} s~ (subregular solutions). These quantities 
generally proceed from the Hultgren et al. com- 
plication [12]. For binary solid solutions, as 
thermodynamic quantities are very scarce, the 
parameters X s, are estimated from L 3,ii,, and the ii' 
binary phase diagram by using the equation of 
equality of the chemical potentials of the minor 
element i' of the solid phase for the two phases in 
equilibrium: 

X s, = [RTln(x~/x~)+ Xu,(xiL L)2 

+ L f  O - - ~ ) ] / ( x S ) 2  (18, 

For the ternary system, the self-consistency of 
the model is provided by calculating the bulk 
molar fractions of the solid and the liquid phases 
in equilibrium using the regular solution approxi- 
mation. This calculation is performed by mini- 
mizing the free energy of the ternary system 
A - B - C  at a temperature T and an overall compo- 
sition of the biphase range (x a ,  x B, xc)  [13]. 

The free energy with reference to the pure 
liquid phase is minimized with respect to four 
independent variables and is written: 

AF = ~., (s + RT g(x{  lnx{)) 

+ Z  -u~ 
with i 

oso  o 
kti - - P i  = A P i  = - - L }  1 -  (19) 

The equilibrium values o f y i  are calculated by 
minimizing the free energy F of the solid- 
interface-liquid system. As the bulk molar frac- 
tions are fixed to their equilibrium values, the y} 
values can be also calculated by minimizing the 
function o (Equation 15). 

4. Tensioactivity and adsorption 
4.1. Reference state 
The contribution due to the adsorption of the 

elements A, B and C at the interface will be given 
by the difference a* -- a between the tension a* 
of a reference system in which the adsorption is 
zero and the interracial tension a (Equation 15). 

, 
a is found from Equation 15 by putt ingyi  = x~: 

S o S o S o 
U * ~  M : XAO'A~'~M -Jr XBO'B~"~ M -+-XcO-c~"~M 

L " " ' " ' " J J L J J L J J + m ~ ( X A B X A X  B "4- ) t B c X B X  C -1- ) k c A X c X A  ) 

J =/= J' j J J J J J J J J 
- m  ~ ( ) k A B X A X  B "}- X B c X B X c  q- X c A X c X A )  

] 

(20) 

Note that o* corresponds to a purely dynamic 
interfacial tension of a solid-liquid system [9]. 

4 .2 .  Tensioact iv i tg  
The tensioactivity of a component C at the inter- 
face of a solid A-liquid B binary system is charac- 
terized by its tendency to segregate at the interface 
from the liquid or solid phases, i.e. by the values 

"J/x f The equations giving y~ are of the ratio y c /  c. 
obtained by minimizing the function a~2 M 
(Equation 15) with respect to four interfacial 

S S molar fractions y B, Y c, Y ~ and y c L (B and C, and 
A and C being the minor elements, respectively, in 
the solid and in the liquid phase). 

In order to obtain simple tensioactivity criteria, 
we calculate separately the adsorption in the liquid 
layer of the interface and that in the solid one 
with the simplifications x ~ ~ 0 and x s ~ 0. 

In the liquid, for a small addition of C, the 
condition do/dyrd = 0 can be simply written by 
neglecting the adsorption in the solid layer (y s _  
x, : o ) :  

yL 
C In 

1 - - y c  ~ 

x~ 21 . L 
- In i R-F (y~ 

m (X~A -- X~B -- X~C) (21a) 
RT 

In the same way, a second relationship gives the 
adsorption in the solid interfacial layer: 

y s  x s + 2l 
c in (yS x~) s 

_ - -  ~kCA in 1-y  1-x  R-/ 

o o g2M 
m (x c - XXB - xsA) + - Oc) RT RT 

(21b) 

On dilution of the solute C in the two phases 
(i.e. x~ ~ 1 and x s ~ 1), these equations are of 
the same type as the Fowler-Guggenheim [14] 
isotherms established for the adsorption on a solid 
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from the vapour: 

Yc  exp (EiYcgEa) 
X c -  1 - y c  \ RT (22) 

where E a is the adsorption energy at infinite 
dilution and Ei the energy resulting from the inter- 
actions into the adsorption layer. For the adsorp- 
tion from the liquid solvent (B) on to the solid 
layer (x c = Xc L a n d y  c =ycL), we have: 

Ea = ~ = m(xg,-xkB-x~o) 
Ei = 2lX~c 

and for the adsorption from the bulk solid phase 

(A) in the solid layer, (i.e. x c = x s and y c = Y s):  

s 
L 

E i = 2 / ~ . S A  

At infinite dilution, the tensioactivity of  a 
solute C only depends on the zl and Zs values. An 
average adsorption energy mf  for the two kinds of  
adsorption sites can be defined: 

K V T  1 + "r s 

1 + K  v 

where K V is the partition coefficient of  C in the 
two phases, which can be written when A and B 
are mutually insoluble: 

- ( -- & ~  Kv x~ xSA X~C+ ~C 
xS - exp 

c 

where A / ~  is defined in Equation 19. 
A necessary condition for the adsorption is ~ < 

0. As the terms rl and rs are generally of  the same 
order of  magnitude, if K v > > l ,  ~ - - r  1 and the 
adsorption is predominant in the liquid layer and 
vice versa. 

In the case of  f < 0  (that i s Y c - - X c > 0 )  at 
finite dilution of  the solute C, the term E i must be 
taken into account. According to the Equations 

21 a and b, for positive values of  X~c/RT and/or 
XSA/RT, the adsorption will be enhanced (see the 
curve a of Fig. 2), while for negative values of 
these parameters the adsorption will be weakened 
with increasing values o f x  c (see curve c of  Fig. 2). 

The higher the negative value of  ~, the higher 
the tensioactivity of  C at infinite dilution. For 
positive values of  ~, the solute C will desorb from 

Y 

1:(0 

(a) 

(c) 

I 

x 

Figure 2 Schematic variation of the molar fraction of a 
ternary element in a liquid (or solid) interfacial layer 
versus the molar fraction of this element in the liquid 
o r  solid) bulk phase for 71 < 0 (or T s< 0): (a) X~ 3 < 0 

XSA > 0); (b) x ~  = 0 (or xs A = o~; (c~ ~'~C < 0 (or 
(or XSA < 0). 

the interface and the model predicts a nearly zero 
but slightly positive value of  (da/dxc)xc_+ o. 

5. Comparison between experimental 
results and calculations 

5.1. Detailed results for the Fe-Pb-Cu 
system 

We have chosen to detail the computed results for 
this system because the solid-liquid interfacial 
tension a in F e - P b - C u  was measured at 1373 K 
in the whole range of  concentration of  the added 
element (copper) in the liquid phase [15]. At this 
temperature, the maximum solubility of  lead in 
the solid iron is very small s ( X ( p b ) F e  =-- 3 x 10  -6 

[16] ) as that of  iron in the liquid lead (X~Fe)Pb = 
8 X 1 0  .4  [17]), while iron and copper have little 
mutual solubility s L (X(cu)re = 0.075 and X(re)Cu = 
0.033 [18]). 

For calculating a we use the data reported in 
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System f i '  Xii, (kJ mo1-1) 

(a) Thermodynamic data kii, , of binary systems com- 
posing the ternary Fe-Pb-Cu and Fe-Ag-Cu; h S, are 
calculated from X L, and Equation 18 

1000 

Solid Liquid 

Fe-Pb 151 104 [16, 17] 
Pb-Cu 92 31.8-0.0081T [12] 
Fe-Cu 40.9-0.0048T 43.25-0.0046T [12] 
Fe-Ag 127-0.000 92T 105 [19] 
Ag-Cu 31.4-0.0056T 19.7-0.0037T [12] 

(b) Physico-chemical data for the pure components of the 
two systems in (a) 

Element a ~ T m Lf 
(mJ m -2) (K) (kJ mol -I ) 

Fe 254 1809 15.188 
Pb 43 600.4 4.770 
Cu 220 1356 13.054 
Ag 143 1234 11.945 

Table I: as all the binary thermodynamic data X~, 
(Table Ia), are not listed in the literature, they 
have been estimated; L )tFeVb is calculated from the 
solubility of  iron in liquid lead measured in the 
temperatures range between the eutectic and 
monotectic temperatures, s s ~k FePb, )keuPb and 
X s FeCu are computed using Equation 18 from the 
corresponding values of  XL,, and the maximum 
solubility of  the component i' in the solid i. 

Note that even if there is a large error in the 
values of  X s and X s the calculated phase FePb PbCu ' 
diagram and a will be almost unmodified because 
of  the very weak solubility of  lead in the iron and 
F e - C u  solid solutions. 

As the solid phase of  the F e - P b - C u  system is 
nearly an F e - C u  alloy, the value of  the interracial 
molar area ~2 M is 

~2 M = ~Fe ~ f2Cu = 3.6 x 10 s cm 2 mo1-1 

In Fig. 3, the calculated and experimental inter- 
facial tensions, a, at 1373 K are plotted against the 
molar fraction of  copper in the liquid phase (XcLu): 
the values of  a given by the model agree rather 
well with the experimental results, equally as well 
in the field of  small additions o f  copper where o 
rapidly decreases, as in the more concentrated 
copper field where the diminishing of  a is very 
s low.  

In Fig. 4, the five calculated quantities: a, a*, 
* O S a - , Y Cu and y L u are plotted against XLu. The 

curve a*(XLu) shows the influence on o of  the 
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Figure 3 Calculated (a) and experimental (b) interfacial 
tension, a, as a function ofx~b, u at 1373 K for the ternary 
Fe-Pb-Cu. 

only variation of  the bulk phases compositions. 
The effect of  the segregation is given by the dif- 
ference a* -- a (curve b) which takes a maximum 
value for XcLu --~ 0.30. These variations are explained 
by the two graphs (c) and (d) showing the inter- 
facial molar fraction of  the different components 
in the solid and liquid layers, respectively. As y s b 
and Y~e are always very small  (ypS b < 10 .4 and 
Y~e < 0 . 0 3 )  the solid layer composition can be 
described by means of  only y s u and y se, and that 
of  the liquid layer by means of  y LCu and y ~b. The 
curves show that when copper is added to the F e -  
Pb system, this element rapidly segregates into 
both the solid and the liquid interfacial layers to 
the detriment of  iron and lead, respectively. This 
can be explained by the fact that both rl and ~'s 
values are negative (see Table II). However, despite 
Lrll "~ 7.7 > l '&/Kvl "~ 3.2, the adsorption is 
weaker in the liquid layer than in the solid one. In 
fact these values of rl and rs/K explain the shape 
of  the curves Ycu =f(XcLu) near XCLu = 0, where 

S L L L 
( y  cu/Xcu)xCu- ,  o is less than (Y cJXcu)=Cu_~O. 



T = 1373K 

Ir, J rn-Zl (a)  0-*- O- C.,J .'21 
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1000t 0" 
(b) 

' ' '  : '  ' '  ' ' I ' ' 0 0.2 0 4 0.6 0.8 0 0.2 
X L 

Cu 
{c) T=1373K 

~  ...... 
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0.4 Fe 

O,2J'_/., 
'" I/ ', cu zero-=adso~tion . . . . . .  

'~,0 - i . . . . . . . . . . . . .  
".O~ _ . "  0.2 0.4 0.6 0.8 1 

X L 
Cu 
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0.4 L 0.6 0.8 1 

Xcu 

(d) 

liquid 

~. ,o~, " 

I "'l I / f l  

/ Fe 
0 0,2 0,4 X L 0.6 0,8 

Cu 
Figure 4 Calculated curves for the Fe-Pb-Cu system at 1373 K plotted against the molar fraction of copper in the 
liquid phase: (a) interfacial tensions ~ and o* (at zero adsorption); (b) effect of the adsorption on the interfacial 
tension; (c) molar fractions of the components in the solid monotayer (Y~b = 0); (d) molar fractions of the com- 
ponents in the liquid monolayer. 

Moreover, this behaviour confirms the importance 
of the energetic term of interactions in the inter- 

facial layer (Ei) which is more favourable for the 
adsorption in the solid layer than in the liquid one 

s i~ (XCA/XBC ~ 1.7). The amplification of the term 

E i as the temperature decreases, explains that the 
effect of the temperature on the adsorption of 

copper in the solid layer is more important than 
in the liquid layer as we can see from Fig. 5. These 
results show that a monolayer interfacial model 
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T A B L E I I All the thermodynamic data in liquid phase proceed from the Hultgren et al. compilauon [ 12] except 
those of the binary systems marked with 5" (data of Miedema [19]). The k s, values are calculated from X L, and 
Equation 18. All these systems have a partition coefficient K V ~> 100 except the systems marked as follows: (*, K V = 
28.5 ; :~, K v = 3.36 ; w K v  = 5.70) 

A-B-C T kLAB ~'~A k~C kSA ~ exp 
system (K) (do/dX~)xc--,o 

RT  R T  R T  RT  R T  (mJm -2) 

AI-Pb-Sn 873 5.01 1.87 1.49 --4.63 -- 1 300 [21] 
A1-Bi-Sn 823 3.20 2.03 0.20 -- 1.37 -- 200 [22] 
Al-In-Sn 823 3.18 2.03 --0.36 --0.79 -- 100 [23] 
A1-Cd-Sn 823 4.10 5.29 1.31 ~ 0 0 [22] 

Zn-Pb-Sn 605 4.28 1.70 1.86 --4.45 -- 2300 [24] 
Zn-Bi-Cd* 631 3.31 1.66 0.27 3.55 >--2.11 -- 16 [25] 
Zn-Bi-In 609 3.45 2.27 1.28 > + 0.10 0 [26] 

Fe-Pb-Cul: 1373 9.11t 3.23 1.81 3.00 -- 8.39 -- 11 000 [15] 
Fe-Ag-Cuw 1373 9.19t 3.23 1.28 3.00 -- 7.85 -- 3 500 [20] 
Fe-Pb-Ag 1373 9.115- 9.195" 0.48 ~-- 0 0 [27] 

would be insufficient to describe the adsorption of  
copper at the interface of  the F e - P b - C u  system. 

Figs. 6 and 7 show the results for the F e - A g - C u  
system, the phase diagram of which is quite similar 
to that of  F e - P b - C u  system. The a measurements 
were made by Pique et  al. [20]; the data used to 
compute the interfacial quantities are reported in 
the Table I (as experimental thermodynamic data 
do not exist for the F e - A g  system, we use the 
calculated enthalpy of  mixing given by Miedema 
et al. [19]). The detailed results are not presented 
because they are quite similar to those obtained 
for the F e - P b - C u  system. Indeed, as for this 
system, Fig. 6 shows that o decreases rapidly for 
the first additions of  copper in the liquid phase, 
then slowly for higher values of  x CLu . 

The model correctly reproduces the variations 
of  o with X L Cu in spite of  an underestimation of  
the amplitude of  o. Moreover, in Fig. 7, the 

hrexp  "experimental" number, ~' Cu, of  equivalent 
monolayers of  copper at the interface and the 
calculated number of  the same (Nc~u = y S  + 

x cu l ( x  cu + Y~u) as a function of  the ratio K =  L n 
X~g) are compared. ^re,cp 1, Cu is evaluated from the 
experimental curve a(x~u) using the Gibbs iso- 
thermal adsorption equation [20]: we can consider 

that the agreement between the two curves is 
fairly good, taking into account the experimental 

N exp and the numerous approximations error on Cu 
of the mode l  

5.2. Tensioactivity criteria for some 
systems with aluminium, zinc, iron- 
based solid phases 

The factor ~ previously defined (Section 4.2) 

2240 

enables us to know in advance if a ternary element 
C is tensioactive or not at the interface of  an A 
solid-B liquid system. 

We have computed ~ for some ternary systems, 
the solid-liquid interfacial tension of  which was 
measured as a function of  the molar fraction of  
the ternary element C. For each of  these systems, 
Table II gives the experimental value of  the slope 
(da/dxrd)xc__,o (known with an uncertainty of  
30%), the value of  ~ and the thermodynamic data 
used to compute it. 

In all the systems presented, the solubility of  
B in the solid phase A is negligible. On the liquid 
side, in all the systems the solubility of  A in the 
liquid phase B is small L (X(Am < 0.05) except for 
the two systems Z n - B i - X  ( X = C d  or In) in 
which X~zn)ni ~ 0.20. For these two systems, the 
tensioactivity (determined by the value of  ~ cal- 
culated for an A - B - C  system in which A and B 
are mutually insoluble) is clearly overestimated. 
For all these systems, except the Z n - B i - C d ,  
F e - P b - C u  and F e - A g - C u  ones, C is quite 
insoluble in the A solid, the partition coefficient 
K being very large (K v>>102 ) such that ~ is 
nearly equal to ~'1 (i.e. adsorption is possible 
only in the liquid layer of  the interface). 

5.3. Discussion 
In Fig. 3a we saw that the theoretical curve o = 
f(X~u ) for the F e - P b - C u  system showed three 
distinct ranges of  variation of  the slope do/dx CLu: 
for the first additions of  copper, a sharp decrease 
of  a was followed by a smooth diminishing and 
again a larger decrease near the limit solubility of  
copper in the liquid phase; but, on the experimental 
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Figure 5 Effect of the temperature on the calculated interfacial tension and molar fractions in the interfacial layers as 
a function ofx~u for the Fe-Pb-Cu system. 

curve, only the two first ranges appear�9 The 
uncertainty on the o measurements which is as 
large as the variation of  a itself in the copper con- 
centrated range, is responsible for the lack of  the 
third range in the F e - P b - C u  system. Effectively, 
in many other systems such as F e - A g - C u  (Fig. 6), 
Z n - P b - S n  [241, A 1 - B i - S n  [221, A 1 - P b - S n  
[21], the three de/dx c ranges are also found by 
calculation as well as experimentally. As an example, 
we indicate the Z n - P b - S n  system; In Fig. 8, the 

interfacial tension between solid zinc and liquid 
Pb-Sn ,  and the molar fraction x~n are plotted 
against the molar fraction of  added element in the 
liquid phase (xsLn). The first range P corresponds 
to the adsorption of  tin at the interface Zn-Pb .  In 
the second range Q, the interface is saturated in tin 
and a is nearly constant. Finally, in the third range 
R, a again rapidly decreases because of  an import- 
ant variation in the concentration o f  the liquid 
bulk phase as shown on the curve xzLn =f(X~n) .  
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Figure 6 Calculated and experimental values of ( O b i  n - -  

o) at 1373K as a function of the molar fractions of 
copper in the liquid phase ( a b i  n = interfacial tension of 
the binary Fe-Ag system; o = interfacial tension of the 
ternary Fe-Ag-Cu system). 

The first range (adsorption range) only exists if 
is clearly negative, otherwise, as for the Z n - B i - C d  
system [25], only the two last ranges of  avariation 

(Q and R) are present. 
The results in Table II show that only the sys- 

tems having high negative values of  ~/RT (i.e, 
A1-Pb-Sn ,  Z n - P b - S n ,  F e - P b - C u  and F e - A g -  
Cu) exhibit a rather large decrease in a as soon as 
the first amounts of  C are added to the A - B  sys- 

N c u  

1.51 (b) 

- (a) 

I 

0.5 

I 

tern. In the other cases, the adsorption effects are 
either small or negligible. Moreover, in agreement 
with the experimental results, the tensioactivity 
predicted by the model decreases in the following 
orders: 

A 1 - P b - S n  >> A1-Bi -Sn  > A l - I n - S n  

> A 1 - C d - P b  ~-- 0 

Z n - P b - S n  >> Z n - B i - C d  "~ Z n - B i - I n  "~ 0 

F e - P b - C u  > F e - A g - C u  >> F e - P b - A g  --~ 0 

All the examples presented show that at sol id-  
liquid interfaces of  binary systems, the tensio- 
activity of  an infinitely dilute third element is 
never as large as that at solid-solid and sol id-  
vapour interfaces (see Table Ill). At solid-liquid 
interfaces, the tensioactivity mainly results from 
chemical interactions (as for liquid-liquid inter- 
faces) while for grain boundaries and flee surfaces, 
the cohesion and lattice strain energies are the two 
factors mainly responsible for the segregation [28]. 
For this reason, in contrast to solid-vapour, 
l iquid-vapour or grain-boundary interfaces for 
which an important reduction of  the corresponding 
interfacial tension can be obtained with tensio- 
active solutes in the concentration range of  0.1% 
or less, tensioactive effects of  the same magnitude 
of  a solute C at a solid A-l iquid B interface require 
additions of  1% or more. In this range of  concen- 
tration, the energetic interactions in the adsorption 
layers (El) are no more negligible and in order to 
be highly tensioactive, a solute C must be such 
that T ~ 0 and )kSA and/or X~c >> 0. 

I I i .,, 
0 0.2 0.4 0.6 0.8 

K 
Figure 7 Experimental (a) and calculated (b) numbers of equivalent m0notayers of coppei at the solid-liquid interface 
of the Fe-Ag-Cu system at 1373 K, as a function of the ratio K = Xldu/(X~.u + xLAg). 
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Figure 8 Experimental interracial tension isotherm of 
the solid zinc-liquid (Pb-Sn) system [25]. 

As we have noted above, the present model is, 
in principle, applicable only in the low tempera- 
ture range of  the solid-liquid phase diagram, i.e. 
at temperatures much lower than the melting 
temperature, Tin, of the major element A of  the 
solid solution ( T <  0.75 TAm). Indeed, at tem- 
peratures c lo se to  Tin, the solid-liquid interfaces 
are no more atomically smooth and the roughness 
of  the interface must be taken into account in the 
segregation calculation. This is possible, for 
example, by combining the present model with the 
two layers model of  Mutaftschiev [31 ] for atomic 

roughness of  pure components. However, the com- 
plexity of  such a calculation is not justified, given 
that the atomic roughness has rather little influence 
on the segretagion [10] (although the segregation 
has considerable influence on the roughness). In 
other words, the segregation criteria established in 
this paper can be used in a qualitative way even in 
the high temperature range of  the phase diagram. 

Moreover, in the model, we have neglected the 
local chemical ordering effects on the interfacial 
tension and segregation. These effects can be taken 
into account by using for example, Guggenheim's 
first order statistics. However, the influence 
of local chemical ordering on the interfacia! tension 
and adsorption is generally weak in comparison 
with the experimental uncertainty of  these qual- 
ities, as shown elsewhere [30]. 

6. Conclusion 
The two-layer interface model allows the calcu- 
lation of  the interfacial tension and adsorption of  
solid A-l iquid  B-solute  C system, given the 
exchange energies of  the three binary liquid alloys 
(AB, BC and AC), and the corresponding phase 
diagrams. This model correctly predicts the three 
possible ranges of the a versus x~ curve at con- 
stant temperature. Taking o ( A - B ) >  a ( A - C ) ,  an 
adsorption range (P, Fig. 8) is found where a 
rapidly decreases with the first additions of  C in 
the A - B  system, along with an intermediate range 
(Q, Fig. 8) corresponding to a saturation of  the 
interface, where a decreases very slowly with the 
concentration, and a terminal range (R, Fig. 8), 
where a decreases again rapidly, that is mainly due 
to the changes in the bulk phase compositions. 

The first adsoprtion range exists only if the 
value of  ? (the average energy of  adsorption of  the 
solute C at infinite dilution) is negative: the more 

is negative, the more the decrease of  a with the 
first additions o f  C is clearly defined. 

T A B L E t I 1 Slope (do/dXe)xc-+ 0 for different kinds of interfaces 

system A-B Interface T (K) Solute 
(S = solid C 
L = liquid) 

(d~C)x C--+ 0 
(mJ m -2) 

Reference 

Fe-Fe S-S 1693 Sn -- 10 s 
Cu-Cu S-S 1223 Sb -- l0 s 
Fe-Ag S-L 1373 Cu --3.5 X 103 
Fe-Pb S-L 1373 Cu -- 1.1 • 104 
Zn-Pb S-L 605 Sn --2.2 X 103 
Zn-Pb L-L 701 Sn -- 1.2 X 10 a 
Zn-Pb L-L 701 In -- 6 X 102 

[281 
[29] 
[2o1 
[151 
[24] 
[24] 
[30] 
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The study of the interfacial activity of ternary 
elements in some systems with iron, aluminium or 
zinc-based solid phases shows that  the values of  

are in good agreement  wi th  the exper imenta l  tensio- 

activity order in each series. 

The adsorpt ion energy for the so l i d - l i qu id  

interfaces is mainly due to the chemical  in terac t ion  

effects which are v e r y  much  weaker  than those 

which exist for s o l i d - v a p o u r  interfaces or grain 

boundaries  (in which cohesion and elastic strain 

energies predominate) .  As a consequence ,  a strong 

decrease o f  the so l i d - l i qu id  interfacial  tension 

cannot  be obta ined w i t h  addit ions o f  C as small as 

for the other  kinds o f  interfaces,  but  requires 

addit ions o f  l% or more.  
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